WP3: Development of new diagnostic methods
Zero-Shot Pediatric Tuberculosis Detection in Chest X-Rays Using Self-Supervised Learning
Daniel Capellán-Martín; Abhijeet Parida; Juan J. Gómez-Valverde; Ramon Sanchez-Jacob; Pooneh Roshanitabrizi; Marius G. Linguraru
2024 IEEE International Symposium on Biomedical Imaging (ISBI)
DOI: 10.1109/ISBI56570.2024.10635520
Abstract
Tuberculosis (TB) remains a significant global health challenge, with pediatric cases posing a major concern. The World Health Organization (WHO) advocates for chest X-rays (CXRs) forTB screening. However, visual interpretation by radiologists can be subjective, time-consuming and prone to error, especially in pediatric TB. Artificial intelligence (Al)-driven computer-aided detection (CAD) tools, especially those utilizing deep learning, show promise in enhancing lung disease detection. However, challenges include data scarcity and lack of generalizability. In this context, we propose a novel self-supervised paradigm leveraging Vision Transformers (ViT) for improved TB detection in CXR, enabling zero-shot pediatric TB detection. We demonstrate improvements in TB detection performance (~12.7% and ~13.4% top AUC/AUPR gains in adults and children, respectively) when conducting self-supervised pre-training when compared to fully-supervised (i.e., non pre-trained) ViT models, achieving top performances of 0.959 AUC and 0.962 AUPR in adult TB detection, and 0.697 AUC and 0.607 AUPR in zero-shot pediatric TB detection. As a result, this work demonstrates that self- supervised learning on adult CXRs effectively extends to challenging downstream tasks such as pediatric TB detection, where data are scarce.